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AN ANALYSIS OF 
SIMULTANEOUS BEAM FORMATION BY MEANS OF 

PASSIVE SCATTERING MATRICES 
AND UNIFORM PLANAR ANTENNA ARRAYS 

BY 

R. F. Schmidt 

Abstract 1-72? 
The subject report discusses a general three-dimensional crystal-lattice 

diffraction analysis for uniform planar antenna arrays and treats, in particular, 
a r r ays  whose lattice phase gradients are determined by an image plane and 
simultaneous beam-forming matrices composed only of coupler hybrid junctions 
and fixed phase shifters. A large selection of a r ray  problems is discussed in a 
unified manner by means of lattice notation and the scattering matrix concept. 
Spatial coordinates of antenna beam maxima and nulls a r e  located directly by 
means of expressions resembling M. von Laue's crystal diffraction equations. 
The subject of a r ray  gain is related to the surface integral JE2(e,y) s i n  BdBdq .  
Topics such as grating-lobe formation, cosine-order beams, and beams in the 
"invisible" region a r e  treated with relative ease. Weighted addition of beams 
is also considered with a view toward side-lobe level reduction for simultaneous 
beam-forming matrices,  continuous beam steering, and dual-plane phased ar ray  
monopulse angle tracking. 

This report represents an attempt to formulate the uniform planar phased 
a r r ay  problem and the multiple-beam matrix concept for purposes of machine 
calculation. The scattering matrix notation introduced herein provides an orga- 
nized analysis of beam-forming circuits. It is possible to convert the scattering 
matrix to a transfer matrix which admits chain multiplication for tandem cir-  
cuits, thereby providing a method for handling circuits of greater complexity. 
The report is by no means complete and treats only a few simple scattering 
circuits. It is, however, a point of departure for a more general investigation 
of scattering junctions, circuit topology, and inertialess o r  electronic antenna 
beam scanning by a purely passive technique. 
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AN ANALYSIS OF 
SIMULTANEOUS BEAM FORMATION BY MEANS OF PASSIVE 

SCATTERING MATRICES AND UNIFORM PLANAR ARRAYS 

bY 

R. F. Schmidt 

INTRODUCTION 

The subject of siniultaneous beam formation from a single aperture has 

received considerable attention due to (1) the inherent advantages accruing from 

redundant use of the same antenna structure, (2) the iiiertialess scanning feature 

which eliminates physical rotation of large-aperture structures , and (3) the 

track-while-scan capability for  a multiple target situation. Although high data 

rate systems are frequently associated with ballistic-missile saturation attacks 

and related tactical problems , it is evident that simultaneous beam formation 

offers numerous advantages and additional degrees of freedom for satellite 

tracking and telemetry data reception. Some of the constraints imposed in the 

tactical radar case can be removed for satellite and spacecraft problems. For  

example, the target analogue ordinarily car r ies  a beacon or  transponder and 

the a r ray  complexity introduced by short-pulse utilization is eliminated. The 

approach to multiple satellite tracking outlined is considerably simplified. 

Transient a r ray  analysis is considered to be beyond the scope of this report. 

The principal objective of this report is to present the general three- 

dimensional crystal  diffraction notation and apply it to studies of uniform planar 
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antenna arrays placed over perfectly conducting ground planes, a particular set  

of three-dimensional problems. Actually , numerous uniform ar ray  problems 

can be solved in an organized manner by means of the general diffraction analysis, 

and several advantages accrue from this rather formal approach. Some of these 

a r e  the computing and plotting of far-field radiation patterns by machine methods, 

and the determination of total radiation by means of surface integrals to deter- 

mine precise directive gain values for  an array. The general three-dimensional 

analysis presented in this report draws heavily upon sources in the classical 

literature. Various assumptions and idealizations under which the analysis 

presented is valid a re  discussed in detail. 

The analysis is shown to provide a high order  of flexibility for studying 

arbitrarily large arrays,  and admits variation of such parameters a s  the array 

phase gradients, the element separation, the free-space element pattern, and 

the height of the source element above the reflector. Calculation of the angular 

coordinates of the principal beam maxima is achieved without mapping the com- 

plete radiation patterns , although the detailed three-dimensional Fraunhofer 

patterns can be obtained directly from simple source and lattice factors. The 

beam principal maxima and minima are  located by means of von Laue type 

diffraction equations which, when satisfied, lead to simultaneous maximization 

of certain lattice factors. Using the same general three-dimensional crystal 

notation, the origin and significance of grating lobes is  discussed in relation 

to so-called spurious (non-visible) beam conditions which can ar ise  fo r  planar 

arrays. The subject of a r ray  phase centers is introduced and an expression is 

derived for the requisite phase corrections when two o r  more beams a r e  combined 
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by redundant utilization of a linear o r  planar aperture to form simple sum, 

difference, and cosine-order beams. 

A certain amount of material pertaining to hybrid junctions and scattering 

matrices is introduced subsequent to presenting the crystal lattice notation to 

make the application of the lattice notation specific. The array phase gradients 

a r e  determined by particular forms of scattering matrices which, to a certain 

extent, predetermines the solutions for the far-field radiation patterns. The 

scattering matrix concept is shown to provide a convenient means of displaying 

linear and planar a r ray  gradients which greatly facilitates multiport circuit 

analysis. Basic hybrid building-blocks of the corporate feeds and the complex 

feeds themselves are described in terms of mathematical matrices whose 

individual elements represent reflection coefficients and transmission coefficients 1 
of definite amplitude and phase. A linear (16 X 1) scattering matrix is presented I 
in detail. The corresponding simple sum beam (first-order cosine beam), the 

difference beam , and the aperture illumination (current distribution) a r e  then 

formed to illustrate the application of the notation. 

DIFFRACTION MODEL 1 
Since there exists a remarkably close analogy between x-ray diffraction 

analysis and antenna a r ray  theory, the methods developed for crystal structure 

analysis a r e  in large part applicable to antenna design. The x-ray diffraction 

problem, simply stated, is one of determining the location of the atomic dipoles 

in a crystal-lattice structure from diffraction spectra consisting of intensity 

information only. The antenna array problem is one of determining a radiation 

I 
~ 

pattern corresponding to particular lattice spacings and prescribed phase 
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conditions among the source elements. References pertaining to the crystal- 

lattice approach, as adapted to antenna analysis, can be found in the textbooks 

of Stratton' and Silver? In order  to facilitate the discussion the notation of 

Stratton will be used throughout this report wherever the lattice analysis appears. 

Certain assumptions are fundamental to the determination of far-field radia- 

tion patterns by means of diffraction analysis. Among these is the assumption 

that the constitutive parameters are independent of field strength, which ensures 

the linearity of the constitutive equations and Maxwell's equations. That is, 

if the conductivity D, electric inductive capacity E ,  and magnetic inductive capa- 

city p are independent of field strength, then the superposition of fields is admis- 

sible. A set  of electric and magnetic field vectors E, and H,,  due to charge and 

current source functions p, and If,, satisfies the field equations. This se t  can be 

summed with a similar set  E, and H,, due to p, and J2, which also satisfies the 

field equations. Then E = E, + E,, H = H I  + E,, ;J = p, + ,,J, and 7 = 1, + 7, is a 

superposition which is consistent with Maxwell's equations and which describes 

a possible electromagnetic field. The subject of antenna gain is closely associated 

with this notion, as will appear later. 

Another assumption ordinarily taken into the diffraction analysis is that the 

radial distance r from a source element Sj  to the far-field point P i s  given by 

The vectors from coordinate origin to radiator, radiator to field point, and 

origin to ficld point a r e  given by T . ,  r and R respectively as shown in Figure 1, 
J 4 

- -  
and Eo= R / I R I ,  a unit vector. This notation will be consistent throughout the discussion. 
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The inference of Eq. (1) is that F R I 

. ;, 
* '  . 

0, o r  F and R a r e  parallel for the field point. 

Superposition of the component fields con- 

tributed by sources (1) with separate current 

distributions and (2) occupying a finite region 
X- 

of space leads to quasi-point-source fields. 
Figure 1-Origin of coordinates, 

The far fields obtained in this manner a r e  source, and field points. 

not point-source fields since the equiphase 

surfaces a r e  not the family of spheres of constant radius R ,  in general, even if  

the individual sources are true point-source radiators. A rather lengthy argu- 

ment is required to develop the expressions for the far-field resulting from a 

multiplicity of sources if Maxwell's equations a re  taken as the starting point. 

The text by Silver3 treats this problem rigorously and in considerable detail. 

It is sufficient here  to state that the far-zone fields a t  a point P have the form 

+ O ($) + O (i) 
and 
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under 

- - 
r = R - r j  * R o ,  

where the new te rms  are: 

- 
J = the magnetic current density; a formalism taken to be zero, generally, 
m 

but retained here for symmetry purposes. 

w =  2vf 

f = frequency 

A 

A = wavelength 

The volume integrals a r e  independent of r ,  ensuring that R E  and R H  remain 

finite as the radius of the sphere of observation approaches infinity (R - a). 
Since E and E satisfy the radiation conditions 

P P 

and 

-1 l i m  R[(Z) 1 / 2  ( R o  - x E) - H  = 0 
R-UJ  (5) 

the radiative components of E and are mutually perpendicular and both normal 

to Eo. 
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At this point of the development, it is sufficient to consider only the E fields 

since radiation has now been established, and it is helpful to resolve the E field 

of Eq. (2) into 0 and 4 components in a spherical coordinate system. Then, if  

i o ,  1, are unit vectors, e c  

- 
E = E, I, i- E, f, P 

where 

and 

s inc e 

- 

(9) 
? -  

-- I 

J, X R; i q  J; i4  

and 

Jm xR;i -J;+ ‘9 (10) 6 

The diffraction analysis for a planar a r ray  can now be accomplished by consid- 

ering the cross-polarized components E,, E, independently, therefore , the 

crystal-diffraction analysis will be written for linear polarization only. Com- 

posite fields can then be constructed as required by summing the resultant Ep and 

Ea fields radiated from the array with due regard for their phase relationship. 
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The amount of complexity introduced into an antenna a r ray  analysis depends 

upon the assumptions admitted for the ensemble of radiators or  scatterers.  In 

the case of x-ray crystallography, the scattering cross-section is a small  frac- 

tion of the area irradiated by the incident wave and the usual assumption is that 

the scattering from any one center is independent of the presence of other scat- 

t e r e r ~ . ~  Multiple scattering between elements is neglected. This assumption is 

carr ied into the present analysis and each element of the a r r ay  will be consid- 

ered identical and invariant with scan angle. Each element is also taken to be an 

interior element of the a r ray ,  to the exclusion of all edge effects. An equivalent 

statement is that the a r ray  is assumed to be of such an extent that the ratio of 

peripheral to interior elements is negligibly small. Any interaction which leads 

to a new set of identical element currents 

since the original set of currents IoJ  is simply replaced by I:J which permits 

a reapplication of the notation. Problems pertaining to power conservation, 

energy storage in the a r ray ,  absolute gain, o r  absolute field intensity require 

additional attention. 

I' will not invalidate the analysis 
OJ 

LATTICE NOTATION 

A planar a r ray  of sources exhibiting complex phase patterns, situated over 

a perfectly conducting ground-plane is a particularly interesting array which can 

be considered as a three-dimensional lattice of source elements and is one which 

brings out most of the salient features of the analysis. It will be assumed that 

the a r r ay  is uniform in the sense that (1) all of the real and image elements are 

parallel to one another and ca r ry  currents of identical magnitude, (2) the spacing 

of the elements is uniform but not necessarily equal on each of three orthogonal 
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coordinate axes, and (3) the phase gradient on each axis is linear, but not neces- 

sarily equal for  the three principal directions Gl , a , a as shown in Figure 2. 

The result of Eq. (7) can be restated, with some slight modification, to admit 

complex array elements and to provide for  relative phase delays between the 

array phase gradients. It is convenient to undertake this by noting that the j t h  

oscillator in the lattice is located by a vector 

2 3  

- __ - - 
r .  1 = j l  al t j ,  a, t j 3 a 3  

as shown in Figure 2; where j , j , j are integers including zero. It follows 

that the phase of the j t h  ' oscillator with respect to the phase of the oscillator at 

the origin is Pj,  

allowing f o r  phase shifts 6, , x 2 ,  b 3  in the network corresponding to the forma- 

tion of the gradients u1 , a2 , a3 respectively. Following Stratton's' lattice nota- 

tion, the radiation field of the j t h  oscillator is 
- 

i k R -  iwt - ikRo'? - ip, J 
E. = - i 60  Ioj Fo(H) e 9 (12) 

J R 

assuming a half-wave oscillator oriented as in  Figure 2, where R, is a unit 

vector, Ro z E/ 1 R 1 , in the direction R and is consistent with Figure 1. The 

composite o r  resultant field for the entire array then becomes 

- 
-i(kRo'r. + p .  ) 

(13) 
C 1 . e  1 1  

e i k R  E i w  t 

OJ 
E = - i 60F0(8)  

R 
j 

If the simple half-wave oscillator is replaced by a complex source element, and 

if one of the E,, E~ fields is considered at a time, then Eq. (13) can be written as  

9 



Figure 2-Uniform lattice structure in 
three dimensions defined by orthogonal 
base vectors El, Zz, "3. 

where FA (8) represents the amplitude envelope of the free-space field-intensity 

pattern and g(0, 4) 6 is a function which defines the phase-pattern of the com- 

plex source element. 

Let the number of radiators in any line parallel to the x, y,  z axes be n1 , 

n 2 ,  n3 respectively, so that the lattice is completely filled, and let the spacings 

along the coordinate directions be al  = 1 all , a2 = la2( , 

are then given by 

a3 = 1 a ,  I . Unit vectors 

and 

10 



Complex lattice factors can now be defined as follows to account for the total 

field generated by the a r ray  of oscillators. 

nl-1 
-i j ,  ( k a l  s i n  8 c o s  4 t a l >  

f l =  C e 
j 1=0 

n,-1 

-i j 2 ( k  a 2  s i n  6 s i n  4 t a 2 )  
f 2 =  e 

- i j 3 ( k a 3 c o s e + a 3 )  

(17) 

j ,=O 

Each lattice factor above has exponentials whose arguments depend upon a spa- 

tial term (a projection) and temporal term (a phase gradient). All diffraction 

phenomena discussed in this report a r e  based on these fundamental expressions. 

Let 

(19) ‘1, = k al  s i n  d c o s  + + al 

y 2 = k a 2  s i n  8 s i n  4 t u2 (20) 

y, = k a 3  cos  d t a, 

so that three geometric progressions can be identified a s  follows. 

-i j,Y, ; ( s  = 1, 2, 3).  (ns 2 1). 
j s = O  

The series does not converge in general, but for a finite number of terms,  

-i Y S  -i 2 Y s  - i ( n s - l )  7, 
f s  = eo t e t e  t ..... + e  

11 



and 

therefore, 

-i y -i ns Y, 
f s - f s e  , = l - e  

so that a closed-form expression can be employed for the uniform ar ray  such 

that 

Equation (14) can now be rewritten as 

This equation is sufficient to map all patterns for three-dimensional uniform 

arrays.  

The collection f ,  , f ,  , f ,  constitutes the lattice factors of the a r ray  and the 

magnitude of these factors (eq. 16, 17 ,  18) is  F,, F,, F, respectively. Since the 

lattice factors are associated with the amplitude o r  field intensity patterns in 

subsequent work, it is useful to determine the maximum value of each F, , F, , F, 

and the least upper bound (supremum) of F, F, F3 . 

which is indeterminate for 

J 

1 2  



where hs = any integer. 

The maxima of the lattice factors are therefore given by n1 , n 2 ,  n, correspond- 

ing to fl , fi , f ,  respectively, and the least upper bound for the summation of 

component fields occurs when Fl F2 F3 = n1 n2 n,. This condition, simultaneous 

maxima for  F, , F2 , F, is not a prerequisite for obtaining a principal beam 

maximum. That is, E (principal beam) 5 E (supremum) in general. 

The function s in(nsy , /2) / s  in(ys /2)  can be positive o r  negative, depending 

on the arguments (nsys /2) and (y, / 2 )  , and is of considerable interest in gen- 

e ra l  array studies. A plot of the numerator, denominator, quotient (field pattern) 

and quotient-squared (power pattern) is shown in Figure 3. Particular significance 

attaches to the sign of this function, or more precisely, the sign of the product of 

three such functions without the exponentials e ( S  1 ,2 ,3 ) .  It is 
- i(ns - 1 )  ~ , / 2  

shown later in this report that the summation of simultaneously formed beams 

ultimately depends upon the sign of the triple product of lattice factors for each 

beam taken into a sum via the. field superposition theorem. A detailed discus- 
- i (ns -1 )?’, / 2  

sion of this, including the removal of the exponential t e rms  e e -  i t  

arising from the lattice factors and the source elements, respectively, is de- 

ferred to the discussion of scattering matrix gradients and beam summation. 

ARRAY GAIN 

An approximation to the maximum ar ray  gain can be made from Eq. (24), 

based on the principle of field superposition, if it is assumed that each of the 

n2 n, real  (physically energized) sources dissipates a s  much energy when in  

13 



SIN (y) 
"r' 12 

n, = siN (3) 

SIN (q) 
fl, SIN (s) 

2 

0 
I 

Figure 3-Composition and behavior of 

I 2 l  

0 sin (ns +) 
pattern function. 

1 

"s 

the - 

-I r 

O0 I I  goo 1 - 1 1  I I 1 I eoo 1 

array over a perfect ground plane (n,  

vironment. For definiteness half-wave dipoles a r e  selected as source elements. 

2) a s  when placed in a free-space en- 

The general expression for antenna gain6 is 

relative to a hypothetical isotropic radiator, from which the power gain of a half- 

wave dipole in f ree  spacc is 

J 
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where 

2n 
477 (F,)2 s i n e d O d #  z ? = - 
1.65 

is the total energy radiated from a single X/2 dipole. The validity of (29) fol- 

lows from 

= 1.65 * 
- l2 

Ch/2(max. ) - 

which implies 2.17 db gain, a well-known value. The total energy E, from n2 n3 

dipoles of e w a l  illumination is 

which represents the total energy from the array by assumption. Then the array 

gain is 
1.65 (F,F,F~F,), G "  

" 2 " 3  
A -  

4 + rr (%)] T 
The least upper bound (supremum) for all possible values of CA is obtained for 

F, = 1, F, = 2, F, z n,, F, = n3. 

= (4) (1.65) n2n3 
GAc S U P )  

GA( s u p  )d  b ~: 6.02 db. + 2.18 db. + 1 0  l o g l ,  n2n3 db. 

By way of example, f o r  a square array of 256 elements, n2 n3 = 25G and with 

a2 = a,  r h / 2  say, 

dsup) db 2 8. 19  + 10 log,, 256: 32db.  
1 6 x 1 6  

15 



Actually, the total power radiated from a collection of oscillators in a r ray  

carrying an illumination I 

oscillators times the power radiated from one such oscillator with the same 

illumination when the latter is considered separately? Since Maxwell's equa- 

tions are linear the superposition of fields is always admissible, but (1) addition 

of the Poynting vector (P EXH)or (2) addition of source element power, pertain 

to nonlinear combinations and a r e  incorrect solutions for total power except in 

a few very special cases. It has been pointed out by Stone' and others that a 

pair  of atoms radiate independently for a phase gradient a3 = 7112 , separation 

a3 arbitrary and behave almost independently for CL = 0,  (1 = n if  a3 > 0.7h. 

These special cases have microwave analogues in a pair  of identical linear and 

collinear antennas. 

is not, in general, equal to  the totality of real 
O J  

In general, the comparison of diffraction patterns should be predicated upon 

equal input power. This can be accomplished by (1) deriving the shape E:(F,FlF2F,) 

of the patterns by means of the diffraction analysis, (2) forming the Poynting 

vector (P  E X H )  , (3) determining the total radiation ( P l Z  i, P s i n d d r ' d + = K  Eids)  
z comt 

and (4) normalizing the patterns with respect to total power in each ( . I 2  - K J s  

(& 

patterns can then be weighted byl C, which allows pattern comparison on an ab- 

solute basis. The subject of directive gain is presently being investigated with 

CIS,  where . I 1  ~ C, .'2 relates the total power in each pattern). The field 
- 

the assistance of an IBM 7090 computer to approximate the integral of Eq. (27) 

for  various a r rays  under different conditions. The effect of element spacing, 

aperture gradients, and beam addition on antenna gain will be determined on an 

individual basis in subsequent reports for several  a r r ay  configurations. 



I -  
I -  

VON LAUE EQUATIONS 

An appreciable amount of information can now be derived from the crystal 

lattice notation including (1) position of principal beam maxima, (2) grating lobe 

information, and (3) spurious beam information. Returning to Eq. (26), the in- 

determinacy leading to the realization of the maximum value for each lattice 

factor is identified by 

s i n  y,,’2 = 0 (3 1) 

which occurs when y ,  /2 = hsx i f  hs equals an integer (plus, minus, o r  zero). 

Then, from Eq. (19), (20), (21); 

y1 = k a l  s i n  ti cos 4 + al = 2nh, 

y, = k a ,  s i n  8 s i n  4 + a2 = 2nh2 

y = k a 3  C O S  t ’  t a3 2nh3 
3 

or 

s i n e  c o s  q5 

s i n  H s i n  qk (h, -2)  L - u 2  

c o s  u = (h3 -2) i- = u3 
2 7  a3  

(33) 

(34) 

Equations (32), (33), (34) a re  the array analogues to the equations obtained 

by Max von Laue* for crystal diffraction maxima. These conditions a r e  not 

necessarily satisfied simultaneously by any choice of 0 and q5 coordinate angles 

for arbitrarily chosen h, , h, , h,. The choice of the lattice spacing and the array 

gradients determines the possibility of simultaneous solution of these equations. 

17 



A few simple examples illustrate the usefulness of the von Laue type equa- 

tions. An array of elements which forms images by means of a perfectly con- 

'ducting ground plane introduces a specific ns  and a specific as. If the plane of 

the a r ray  is taken to be the y-z plane, then n1 = 2 and al = n for source ele- 

ments oriented parallel to the y-z plane due to boundary conditions at the ground 

plane. Simultaneous solution of Eq. (32), Eq. (33), and Eq. (34) yields 

1 = " ; t u ;  tu; = 

If a l  = az = a3 h / 2  is arbitrari ly selected for the a r ray  with source ele- 

ments over the ground plane, then 0 5 0 5 71, - n / 2  - < 4 5 t 1112 for physically 

realizable beams and 

The first term of Eq. (36) is minimized for h, = t 1 or  h, = 0, the latter value 

being non-realizable for the array and ground-plane combination here since the 

beam forms in the physically inaccessible half-space. Then 

The two parenthetical t e rms  must vanish if Eq. (37) is to be satisfied. If a,  = 

a3 = 0 is irnposcd on the a r ray  there exists h, = h, = 0 such that equality holds. 

If a2 = a3 - 71 1 6  is imposed on the a r r ay  there does not exist any such combina- 

tion of h, and h 3  and inequality holds for  Eq. (37) 

Since (1, and a3 are the gradients ordinarily associated with beam scanning, 

for  the assumed array orientation, it is desirable that these parameters take on 

18 



many values besides 0 , +n, +271, etc. It is apparent that Eq. (35) cannot be satis- 

fied forallchoices of a,, a,, a3 and a,’ a,’ a,. The factor Fo fl in Eq. (24) can 

be regarded as the pattern resulting from the free-space source element FA and 

the influence of the ground plane f , so that the a r r ay  problem reduces to a study 

of finding simultaneous solutions to Eq. (33) and Eq. (34) only. That i s ,  a field 

point P (d ,  4) is to be located such that the maximum values F, = 1 f ,  I = n2 

and F, = I f ,  1 = n, 

point P(8, 4) and a value F, - I f ,  I < F, 

plies that the beam principal maximum, if it exists, will be less than the least 

upper bound (supremum) of all the possible values of E attainable under free 

choice of a l ,  a 2 ,  a3  and a,, c2, a3. 

rn m 

a r e  to be brought into coincidence at some coordinate 
m m 

~ n, , will be accepted. F, F, im- 
m m 

Simultaneous solution of Eq. (33) and Eq. (34) yields 

[(% - 2) t] 
s i n  d~ L 

which provides the angular coordinates (-, J )  if  they exist. 

Three simple examples a r e  given to illustrate the significance of Eq. (38) 

and Eq. (39) in relation to normal (ordinary) beams, grating lobes, and spurious 

beams. (See Figure 2.) 
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a2 = a3 = n A 6  is imposed. 

h = h  = O  a r e  unique possibilities. 
2 3  

One principal maximum forms, subject to F,F,. This is an example of a 

"normal" beam. The ar ray  is over a perfectly conducting ground plane, the 

separation between all real and image oscillators is X / 2 ,  and equal gradients 

a r e  imposed in the (y) and (z) directions. The beam is "normal1' in the sense 

that it is one of set of beams ordinarily formed by means of scattering matrices 

which generate gradients a2 = ur /n2  and a3 z vn'n3 , where u and v are odd 

integers. "Normal" o r  "orthogonal" beams a s  they are sometimes called have 

the characteristic that the principal maximum of one beam coincides in space 

with the minimum of an adjacent beam. 

Example (10 

Let u1 = 71, a l  = a2 = a3 = A and 0 5 c.' -. < 7112 - 71 ' 2  5 c,t 5 + n / 2  

u z 71/16, a3 : 13 7r '16 is imposed. 
2 

h3 = 0, h3 - + 1, h, r 0 a r e  unique possibilities. 

Two principal maxima form, subject to F, F,. In this case a so-called 

"grating lobe" forms.  but the principal maximum does not coincide with the 

grating lobe maximum in spacc. The array is over a perfectly conducting ground 

plane, the separation between all  real  and image oscillators is A and unequal 

phase gradients are imposed in the (y) and (z) directions. In this instance the 
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increased element spacing allows the formation of grating lobes, i f  a2 or  a3 

a r e  made sufficiently large. Grating lobes exhibit intensities which a r e  equal to 

o r  less than the principal maxima for an a r ray  unless the source pattern F, and 

the lattice factor F, associated with it diminish the product F, Fl F2 F3 as is the 

case for  large steering angles. Figure 4 illustrates typical linear grating lobe 

formation after F, F, is allowed to operate on the factor F3. F2 = 1 for a linear 

a r ray  he re. 

(a)  a3 1 1 3  ~ / 1 6  RADIANS 

(b)  a3 - I5 ~ / 1 6  RADIANS 

Figure 4-Principal maximum @), and grating lobe 9, of linear array over ground-plane; 
a 1  = h / 2 ,  a 3  = 6 h/10,  and x / 2  dipole source elements. 

21 



Example (110 

Let al = n. al = a, = a, = x/2 

The lattice notation requires knowledge of the free-space pattern F, only, 

and the effect of' the ground plane i s  introduced by including the term F, . A s  a 

specific example, the field of a single thin linear center-fed dipole in free space 
I 

a, = a3 = 1517/16 0 5 B L 17, -17/2 5 4 5 .+17/2 is imposed. 

A pair  h,, h, does not exist. "Spurious beams" result instead of principal 

maxima, subject to F,F, . The ar ray  is the same as in the first example, except 

that the phase gradients are larger. In this instance there does not exist a point 

in space such that the maximum value of the product F,F, is realized. That is, 

the last two von Laue equations, Eq. (33) and Eq. (34),  cannot be solved simul- 

taneously for any given direction in space. This is sometimes referred to a s  

"spurious" beam formation. 

The von Laue type equations lead to a precise determination of the angular 

coordinates (8, 4) of the beam principal maxima where F,F, is isotropic only, 

a condition which is approached quite closely for many choices of source ele- 

ments if the beam is not steered too far from the normal to the plane of the 

array.  Ordinarily the exact field patterns a r e  determined by evaluating 

F,F,F,F, , but it is useful to retain the hypothetical isotropic sources here and 

elsewhere to obtain an insight of the function of the lattice factors F,F, without 

the effects of the F,F, term. 
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where L is the total dipole length. For the special case where L = h /2  Eq. (40) 

reduces to 

E, = i 6 0  IIoI roS (:‘Os el 
R s i n  0 

Equation (41) corresponds to F, in  the lattice notation and is therefore sufficient 

to describe this particular source element. It can easily be verified that 

(42) 

leads to the same three-dimensional radiation pattern as the more complex 

express ion O 

where the following correspondences can be made between the notation of Silver 

and Stratton. 

1 Silver 1 Stratton 1 Value 

Equation (43) holds fo r  the half-wave dipole a distance a 1 2  above a perfectly 1 

conducting ground plane and parallel to it. The relative ease with which source 

patterns can be developed, and the fact that the size o r  extent of the a r ray  does 

not increase the computational effort required to evaluate the lattice factors 
* makes the lattice notation especially attractive. 

*The free-space source factor Fo for  a pair of crossed dipoles in arbitrary phase relationship i s  

23 
given in the Appendix A .  



BEAM MAXIMA, MINIMA, AND CROSSOVER LEVELS 

UNDER ORTHOGONALITY CONDITIONS 

An examination of the function s i n  (ns y s / 2 )  / s  i n  ( y s / 2 )  , as it appears in 

Eq. (23) and Eq. (24), leads to a set of equations for determining the beam nulls 

of a planar array. The procedure is similar to that for determining beam max- 

ima by von Laue type equations. It is sufficient, however, for  any one of F, , F, , 

F,, F3, to vanish to establish a radiation pattern null o r  zero value for the field 

intensity. 

"1 

2 
1 
2 

s i n -  (k al s i n  8 cos  4 + al )  

s i n -  (k a1 s i n  8 c o s  q5 + al) 
= o  f = F  I 

1 1  

if  

"1 - (k a, s i n  t? c o s  # + u,) = x177 
2 

where 8, belongs to the set of all integers (4,ez). Then 

s i n  B c o s  q5 = 

(44) 

(45) 

with the restriction 8, f n1 h, since x1 : n1 h, 

the lattice factor F, . That is, Eq. (4G) becomes Eq. (32). 

leads to a maximuin value fo r  

Similarly , 

i f  

"2 

2 
2 2  1 

2 

s i n -  (k a2 s i n  0 s i n  4 + a2) 

s i n  - (k a2 s i n  ti s i n  4 + a*) 
= o  f = F  = 

- "2 (k a2 s i n  0 s i n  ( #  + a2) = 8 2 ~ ;  ( 8 , E Z )  2 

(4 7) 
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L 

Then 

Similarly, 

sin 4 = h (5-2); x2 f n2h2. 
a2 s i n  8 n2 277 

"3 

2 
1 
2 

sin - (k a3 cos  d t a3) 

sin - (k a3 c o s  8 t a3)  
= o  f, z F, = 

if  

"3 - (k a3 c o s  6' t a 3 )  = x3-rr; ( t 3 e z ) .  2 

Then 

C O S  6' = L(2 a 3 -2); t3 i n3h3 

(4 9) 

The usefulness of Eq. (46), Eq. (48), Eq. (50) can be demonstrated and some 

of the abstract character of these equations removed by an example. Assume an 

a r ray  over a ground plane such that arbitrarily chosen values a r e  

n, = 2 ,  n2 = 16,  n3 : 1 6  

al  = a2 = a3 = h / 2  

so that z2 z 17 16,  371116, 

Phase gradients given by the odd-integer rule above are physically realizable 

and lead to the concept of simultaneous orthogonal beams. A physical means 

f o r  obtaining such gradients is  presented later in this report under composite 

scattering matrices. 

, 15- 1 6  a n d  d 3  : IT '16,3;1 16 , 15n116. 

From Eq. (46); = n,hl = 0 implies F, =F, (max) and h, = 0, but can be 

ignored for the half-space given by 0 5 d 5 71 and - 7 ~  '2 5 4 5 t 7 ~ 1 2 .  t1 = +1 
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implies that there exists an infinity of zeros  corresponding to 4 = +n/2, o L 8 L T 

and 4 = -77/2,0 5 B 5 n. 8, = t 2  = n,hl implies F = F, (max) and h, = +l which 

is in the physically accessible half-space. 8,  > 2 and 8, < O  will not satisfy 

Eq. (46) and can be ignored. This exhausts all possible choices of 8, and for- 

mally establishes the fact that the lattice factor F, has only one physically re- 

alizable maximum for the assumed array.  The infinity of zeros in the y-z plane 

ensures that the field intensity of the far-field pattern vanishes in the extended 

plane of the metallic boundary. The latter statement is independent of spacing 

a l  in Eq. (46) and is a consequence of n1 = 2, a, = 7 ~ .  

A plot of the principle beam maxima positions for the assumed planar a r ray  

appears as shown in Figure 5, and results from the use of the generally valid 

Eq. (38) and Eq. (39). The factor F,Fl can be ignored here if  the source pattern 

is slowly varying with (0, 4). 

z (a31 

0 . .  0 . .  . . . . . . .  . . . . . . .  . . . . . . . .  . . . . . . . .  
0 0 0 0 . . xPI);  . . . . . . . .  . . . . . . .  . . . . . . .  . . . . . .  

. . . .  

. . . . . . .  

. . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . . .  . . . . . . .  . . . . . . .  . . . . . .  

> y  (a21 

Figure 5-Position of beam principal maxima for 
16 S 16 planar array in u 2 ,  u (or a2, a3) space .  
The array i s  described by a = a 3  = h/2 and =a 

al = 77, a2 = u n / n  2 ,  a3 = v n / n  3. 



It appears from the plot of Figure 5 that the beams are equispaced in (u,, u3) 

space. This is shown by simple proof. Since the assumed array exhibits no 

grating lobes it follows that the unique values h, = h, = 0 are associated with 

simultaneous maximum values of F,F, if a beam principal maximum exists. 

The total number of principal maxima in the physically accessible half-space 

is seen to be 208 rather  than n2n3 = 256. Equations (33) and (34) cannot be 

solved for 48 combinations of (a2 ,a3)  which lead to spurious beam formation. 

Using 

(33) u, = s i n  $ s i n $  = 

u3 = c o s  e r (h3 -e)-; = h 
a3 

u2 = - Z2/7T,  

Since a2 = urr/n2 and a3 = w / n 3  and n2 = n3 here (square array), it follows that 

"adjacent" beam principal maxima are equispaced in (u, ,u3) space and form a 
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perfectly square grid as shown in Figure 5. "Adjacent" implies a2 is a constant, 

and a3 is a variable o r  vice versa. The coordinate system of Figure 5 is de- 

veloped graphically in Figure 6 ,  where concentric circles in the y-z plane are 

used to map space points associated with (0, ,+,), (6, ,+,), (el , G$,,) and (0, 

(e, 

), (e,, c$~), 

or  the u2, u3 plane. 

Figure 6-Ikvelopment of coordinate 
system (u2, us). u 2  1 s i n  i;: s i n  ./ 

- "2,n' u 3  = cos i !  = - '13,n. 

It is now relatively easy to show that the nulls of adjacent beams occur a t  

common angles for  orthogonal beams. From Eq. (48) and a2 = u7r/n2, 

h 
a2  s i n  B 

s i n  1,L = (53) 

yields a zero for  the field pattern. For  any two adjacent beams generated by u 

and u t 2 = U'  (odd integers) the following is possible: 
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Then the primed and unprimed beams have a common zero when 4; = X2 + 1. A 

similar argument can be presented using Eq. (50). 

Here a3 = vrrT/n3, and v and V I =  v + 2 are used. 

In the above(u , v )  E (z odd) as before. 

It also follows that for  adjacent orthogonal beams the principal maximum of 

any beam coincides with the nulls of all other beams. The proof is presented for 

Eq. (48) only since the same argument can be applied using Eq. (54). A beam 

maximum is implied by X 2  = 0 for the unprimed beam which is generated by an 

aperture phase gradient (u)  v / n L .  A minimum is implied by 4; = 1 for the ad- 

jacent o r  primed beam generated by a (U  t 2) v/n2 gradient. Then 

s i n 4  = h 
(0  -+) = n2a2 A. s i n  d (1 +) n2a2 s i n  d 

and the proof is complete. 

The angular position P(d, 4) at which the principal maxima of adjacent orthog- 

onal beams intersect can be found for the planar array using Eq. (24). Elimina- 

tion of factors not relevant to the crossover level determination leaves 

F, F, F, F, 1 Fi F; F; Fi (55) 

where F, = Fi , F1 = F; at the point of crossover only, and F, = Fl if the two 

beams a r e  adjacent in the sense that a2 x un /n2  

a3 = a;. The problem then reduces to 

and a; = ( u  t 2)77/n2 and 
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n .  I -  sin[$(k a2 s i n  8 s i n  + t a2) 
s i n - ( k  a2 s i n  8 s i n  4 + a2> 1 

2 

a2 s i n  8 s i n  4 t a;) 1 
1 
2 

s i n - ( k  az s i n  0 s i n  # t a;) 
- 

via Eq. (25). 

The condition for a solution to Eq. (56) is that 

(k a2 s i n  8 s i n  4 t a2) = - (k a2 s i n  19 s i n  4 t a;) (57) 

which can be shown by the following. For  small values of the argument (y,/2) 

such as a r e  encountered for beam intersections lying between the principal max- 

ima and the first null, 

s i n  n,y,/2 s i n  n s y s / 2  s i n  n2 (k a2 s i n  0 s i n  4 t a2)  

(k a2 s i n  8 s i n  $ t a2) (58) - .. - - 
s i n  ys/2 Y S / 2  

Let k a2 s i n 8  s incp  = x  and u2 1-1;. Then 

and 

which a r e  both even functions. It follonrs that 

a t  the point of intersection of adjacent beams. But Eq. (59) and Eq. (60) a r e  even 

functions. Therefore, Eq. ( G l )  is satisfied if  

or  

( x  t ( L 2 )  - (x + a;) . 
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Eq. (62) forces the conclusion that a2 = a; which represents two beams every- 

where coincident in space, and violates the assumption that a2 = u.rr/n2 and 

a; = (u + 2)7r/n2 for adjacent beams. From Eq. (63) it follows that 2 k a2 s i n  B 

s i n  4c = - ( a ;  t a2) ,  which is the condition stated in Eq. (57). Rewriting, 

- A  (u t 1) 

2 n 2  a2 s i n  B 
- 

- (a i  t a 2 )  

2ka2 s i n  8 
s i n  +c = - 

where += is the value of + at crossover and u is the least value for the two 

beams selected. Similarly if aZ I a; , but a3 I a ; ,  

- ( v  t 1) 

2 n 3  a 3  

cos oc = 

where B is the value of B at crossover and v is the least value for the two 

beams selected. 

The utility of Eq. (64) and Eq. (65) is illustrated by two examples. 

Let u = -1 and u' = -1 +2; a3 = . r ; .  Then the lesser  of -1 ,  +1 is -1 in Eq. (64). 

- h ( u  t 1) 

2n2 a2 s i n  i' 
s i n + c  1 : 0 and  4, = 0. 

Let v = -1 and v' = -1 +2; a2 = o;. Then the lesser  of -1, +1 is -1 in Eq. (65). 

- )  (v  t 1) 
c o s  t i c  1 ~ 0 and bc = n ' 2 .  

2 n 3  a3 

If 4, is substituted into the expression €or the lattice factor F,,, Eq. (25) for s = 2, 

or  i f  Uc is used to evaluate the lattice factor F3,, Eq. (25) for s = 3,  the follow- 

ing hold. H e r e  n2 > >1 or  n3 > >1. 

F2c - 2 n 2 / n  

F3c - 2n3/77 
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Assuming . F, = Fh and F, = F; for the adjacent beams it 

makes sense to state that the crossover level, referred to the main beam princi- 
prin.max. p r i n .  max. p r i n .  max. p r i n . m a x .  

pal maxima, is given by I 

p r i n .  max. p r i n .  max. 

even if F, < 1 and F, < 2. F2 2 tJZc, F3 6 2 1 implicitly. 

That is, the crossover level is approximately 3.9 decibels below the beam prin- 
p r i n .  rnax. p r i n .  max. 

cipal maximum level under the special restrictions given above. 

The preceding discussion, pertaining to adjacent beam crossover levels for  

planar arrays,  holds equally well for linear a r r ays  and either Eq. (64) or  Eq. (65) 

can be made applicable by proper orientation of the linear array in the coordinate 

frame. A set of E-plane radiation patterns derived for a 1 G X l  (linear) a r ray  of 

half-wave dipoles is shown in Figure 7. The difficulty of defining the beam cross-  

over levels for all steering angles in any simple manner is illustrated by the pat- 

terns with the largest beam-steering gradients. 

SIMPLE SCATTERING MATRICES 

The subject of corporate feeds is cxtcnsive and will be limited here to a brief 

discussion of passive circuits composed of hybrid coupler elements. Even this 

restricted topic can lead to numerous involved discussions, therefore , the present 

dcvelopmcnt will be carried just f a r  enough to allow several  examples of the ap- 

plication of the crystal lattice notation given earlier. Since the basic components 

of beam-forming matrices a r e  3-db. directional couplers and hybrid rings, the 

mathematical representation of these components is given without derivation, 
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Figure 7-Adjacent beams of 16 x 1 linear array of half-wave dipoles 
over ground-plane. al = a3 = h./ 2, a1 = n, L : ~  = v n/ 16 
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followed by one composite scattering matrix associated with antenna beam scan- 

ning circuitry. 

Coupler and ring type "magic tees" a r e  shown in Figure 8 together with their 

respective (coaxial) scattering matrices.12 The convention adopted here  is that 

only the angle $ , say, will be entered a s  a matrix element of large matrices for 

a real  time delay e - J $  where the context makes the meaning clear. A scattering 

matrix element is taken a s  the reflection or  transmission coefficient between an 

input terminal ( j  ) and an output terminal (i) , where i j is the row-column 

designation. Both Sij  and a r e  symmetric matrices since Si  = Sj  and 

a r e  in fact both unitary l3 matrices since the complex conjugate (Si )* trans- 

posed, o r  (ST ) t ,  times the original scattering matrix Si 

matrix I , where I is a diagonal matrix with unit elements. 

gives the identity 

COAXIAL COUPLER CIRCUIT  COAXIAL RING CIRCUIT  

Figure 8-Magic T coaxial configurations and the 
associated scattering matrices. 



. -  

Only the coupler type circuit will be employed in the remainder of this re- 

port, however, the equivalence of the ring and coupler types is formally estab- 

lished by the following transformation. The terminal (reference) planes of the 

four lines attached to the coupler circuit can be displaced by the transformation 

(69) S '  ZPoS P 
O 1 1  ' J  

where P is a diagonal matrix with elements P, k= e - J$k 

kt 

y5k > 0 ,  above is consistent with the use of a negative angle for a real time delay 

in the writing of the S1 

corresponding to the 

line into which a phase-shifting element is introduced. The choice of the 

previously. If the two scattering matrices a r e  equivalent, 

0 S 1 J  0 S' I ]  - P O S l J P  (70) 

After premultiplication and postmultiplication of ,S 

pared to ,S1 

by P the is com- 
' I  

on an element-by-element basis, yielding the following equalities. 

Therefore = 0 ,  $ J ~  = 7r/2, 43 = 3 - / 2 ,  L, = 77, $, 2 o a r e  solutions. Place- 

ment of corresponding delay lines in  lines (l),  ( a ) ,  ( 3 ) ,  (4) of the coupler cir-  

cuit is required to make .S and S indistinguishable from one another. 
11 ' 1  

COMPOSITE SCATTERING MATRICES 

The synthesis of composite scattering matrices for beam scanning will be 

deferred to a later report, but a typical circuit is presented as Figure 9. This 

35 



ANTENNA PORTS 

BEAM PORTS 

Figure 9-Simultaneous beamforming matrix for 16 x 1 (linear) array composed of 
coupler-type magic T elements and fixed phase shifters. 

particular configuration forms 16 independent orthogonal beams, individually o r  

simultaneously, and the associated scattering matrix 1 6 ,  

Ordinarily a beam-forming matrix of this type is associated with linear antenna 

is given as Eq. (74). 

arrays.  

I 

A i J  I B i j  
I 

Cij  I D i ,  
I - - 

(74) 
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Si = e - ' $  in real  time. Only the angle (++) is entered as an element of the 

scattering matrix here, for  compactness of writing and is expressed in units of 

n/n2 = ~ / 1 6  since a2 = u.rr/n2 where U E  (z odd). In Eq. (74), the partitions Ai 

and Di 

and perfect isolation between input or output ports. Since 1 6 ,  lSi is symmetric 

about the principal diagonal, B . .  = C . .  . These 16 X 16 matrices a r e  partitions 

of the 32 X 32 matrix 16 ,  S .  , . Matrix C .  . is presented in complete detail in 

Figure 10. It is noted that 1 6 ,  ,si 

, 

of matrix 16, lS i  a re  null, representing matched conditions at all ports 

I J  J I  

' J  1 J  

is a unitary matrix. Since(,,,,STj) t ( 1 6 ,  
~ = 1. 

- 
!O 

33 
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21 
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29 
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35 
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41 

28 

15 

2 

21 

8 

27 

14 

33 

20 

I 
I 
I 

I 
I 
I 
I 
I 
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29 21 24 16 39 31 

8 16 31 39 22 30 

19 II 38 30 37 29 

30 38 13 21 20 28 

41 33 20 12 35 27 
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257T RADIANS => e-j(%) TIME D E L A Y ,  ETC. 
16 

Figure 10-Partition C . of matrix 
'I 

37 



In like manner the scattering matrices of planar a r rays  can be written. If 

s. . is utilized as the basic component (matrix), the composite beam-forming 16.1 1 1  

circuit of Figure 11 results; the associated scattering matrix being 

1 
n2,n3 s . .  1 1  = 16.16’ij = 6 

[Ai j Bi j] 
- - - c  - - - -  

C i j  I Dij 

BEAM PORTS 

(7 5) 

Figure 1 1  -Composite beam-forming circuit utilizing thirty-two 16,1s ij matrices. 
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where the A,, = Dij = 0 a s  before. Here B,, and Cij a r e  not the same a s  in 

Eq. (74) since now each of these partitions is a 256 x 256 matrix of the overall 

512 X 512 matrix 6, 16 S . . . Any column of Ci 

on the aperture of a 256-element square array of antenna elements. Only C, 

is required to investigate various independent antenna beams, and Bi 

always be generated by the simple expedient of transposing the subscripts (i j ) 

in C . .  . That is, Bi , = Cj in general. If the antenna ports a r e  used as beam 

ports the column matrices of B, , determine the phase gradients across the 

antenna aperture. Equation (76) illustrates the manner in which the aperture 

gradients can be identified for the planar array of 256 radiators depicted in 

Figure 12. The space relationship among the radiators is not indicated here. 

represents the phase conditions 

can 

1 J  

1 
16.16’ij = 16 

A i j  ( n u l l )  

‘ B  I 1,257 ‘1,258---- ’1,511 J31S12 
I 
I 
I ’2,257 ’2.2S8---- B2,S11 B2.512 
I I  I I I I 
I ’  I 

I I I 
I ‘  
I I  
I 1  
I I  I I I 

I I 

I I I 
I I I 

---_ I B2S5,257 B2SS,258 B2SS.S11 ’255,5 
I 

I 256,257 ’256,258 
I 

I B  ---- ‘256,511 ’256,s 

----- ------___------ ~ - - - - - - - - - - - - - - - - - - - - 
‘257.1 ‘2S7,2-- - ‘2S7,255 ‘257,256 I I 

‘258.1 ‘258,2---‘258.255 ‘258.256 I I 
I 

I 
‘5 11.1 ‘5 11,2-- - ‘S 12,255 ‘S 11,256 I 

I 
I - ‘5 12 v 1 ‘ 5  12,2---‘512,255 ‘5 12.25 6 I 

Dij ( n u l l )  
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(ANTENNA PORTS) 

257 258 259 510 511 512 

Number of beams = N, 

Number of hybrids = N - - N  1 log NB H - 2  * 2  
1 6 , ~ s  i j 

Number of internal phase shifters = 

'q' 264  0 255 256 I 2 3  I 

(BEAM PORTS) 

Figure 12-Schematic representation of scattering circuit for 
256-element planar array of radiators. 

Under the transposition B i j  = Cj , the column matrix B i , 2 5 7  corresponds to 

the aperture phase gradient when the antenna port  257 is used as a beam port, 

for example, and 

- - 
B 1 , 2 5 7  

' 2 , 2 5 7  

I 
I 

I 
! 
I 
I 

'255, 2 5  

'256, 2 5  - - 

- 
' 2 5 7 , l  

' 2 5 7 , 2  

I 
I 
I 
I 
I 
I 

' 2 5 7 . 2 5 5  

- '257, 2 5 6  - 

(77) 

The scattering matrix 16,16Sij is symmetric since it is equal to its own trans- 

pose, but the antenna ports cannot be employed as beam ports. Nevertheless the 

1 6 ,  16Si matrix is reciprocal in the sense that either transmitting o r  receiving 

equipments can be utilized at the beam ports; a unique pattern exists for these 

two modes of operation. It is noted that the scattering matrices of simple coupler 
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and ring hybrids are both symmetric and unitary, as are the composite scatter- 

ingmatrices 1 6 , 1 ~ i j  and 16,16Sij. 

BEAM COMBINING 

The possibility of weighted addition and subtraction of two or  more of the 

independently formed beams derived from a planar aperture is now considered. 

Using the notation employed in the preceding analysis, the particular case of a 

16 x 16 element planar a r ray  is selected as an example and the composite beam- 

forming matrix of Figure 11 is utilized. Some attention must now be given to the 

absolute time delays involved in passing through the beam-forming matrix before 

performing any sum or  difference operations. The beams are summed in space 

according to the superposition theorem discussed previously , therefore, Eq. (24) 

is repeated here for convenience, 

i 6 0  I, Fi (B) e - ~ (  e - ( 6 , + F 2 + F 3 )  f f f , i k R - i ~ t  E = -  R 1 2 3  

The surface on which the fields a r e  observed will be taken as the sphere of 

radius R ; all source elements a r e  assumed to be identical; and the frequency of 

two simultaneously generated beams, A and By is f A  f, = cL: ' 2 ~ .  

The interference phenomena on the sphere of observation now depend on the 

interaction of two beams 

and 

where k, and kB are constants of proportionality and equal o r  unequal weight 
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can be ascribed to these constants. By Eq. (23), the EA and E, above can be 

rewritten as 

- i ( s1 A t F 2A t 8 A) s i n n ;r1 ,/2 s i n n2 y2 A /2 n3y3A/2 

Y3,4 / 2 
EA = k, e 

s i n y, A i 2 s i n y2A / 2 

For any point P(B, q5), and for beams formed by circuits of the type shown in 

Figure 11, the arguments of the exponential t e rms  of Eq. (80) and Eq. (81) become 

(nl - 1) (n2 - 1) 
(ka, s i n  d C O S  / d l A )  + 2 2 

(k a2 s i n  d s i n  $ + a2,) '1, -t '2, "314 

(n3 - 1) 
(k a3 c o s  8 t a3,) 2 

t 
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A square a r ray  implies n2 = n3 = n ; a perfect image plane implies s lA 1 s,,, 

Since all space terms cancel, the phase difference for the =n; n1 = 2. 
a l A  alB 

resultant far-fields of beams A and B ,  referenced to an end source element can 

be written a s  

Referring to Figure 11, arbitrarily assume the selection of two adjacent 

beams so that a2A f u2B , but a3A z 

implies that only one horizontal 1 6 ,  Si 

a r e  energized (transmitting case) and all radiators a r e  energized. Also, since 

the adjacent beam signals enter the vertical 

b3B. The phase difference in this instance reduces to 

It is clear from the circuit that this 

is energized, but all vertical 1 6 ,  Si 

1 6 , 1  Si af the same level, the delay 
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The term IC,, above, is graphically presented in Figure 13 for  16, S .  I, . when the 

adjacent beams a r e  generated by columns 248 and 256 of Cij in 16,16Sij given 

in Eq. (76). The origin and physical significance of the terms (82B - 82A) and 

(n - 1) (azB - a r e  based on the fact that aperture phase is referenced to the 

source element a t  the origin of coordinates. Although IC, was derived from beam 

considerations in  space, it is noted that all space factors a r e  absent in the ex- 

pression for IC, and only circuit parameters of 16, Si 

2 

remain. It can therefore 

Figure 13-Graphic phase-center determination of 16,16Slj 

beams using ,G,lSij scattering matrix gradients. 
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be taken as the difference between the phase centers C, and 

beams A and B since $ = C, - C,. 
If these beams are to be used to form a simple sum beam, a phase delay of ($) 

radians is required in the feeder of beam A .  Similarly, ($ t 7 ~ )  radians of phase 

of the array 

Thus it can be seen that delay is a problem. 

delay is required for a simple difference beam. 

APERTURE ILLUMINATION 

Originally uniform aperture-element illumination w a s  assumed for each in- 

dependent transmitting beam formed by a simultaneous beam-forming matrix. 

This assumption was fundamental to the summation of the polygon of electric 

field components from the aperture, a geometric series. It is of some interest 

to investigate the aperture current distribution associated with the formation of 

sum beams as this provides intermediate beams in space and is prerequisite to 

more advanced concepts such as phased array monopulse. If the summation in- 

volves equal beam weights (i.e., equal principal maxima) , equal coefficients can 

be assigned to the column matrices of Ci 

planar example, the aperture current is obtained for the particular case of 

a3A z a3B 5 ~ / 1 6  , a2, n.'16, aZB : 37 16. For this case 

for  each beam. Continuing with the 

s o  that 

15n 17n (16 - 1) (g - E)= 13n/16. 
2 

t - 
'248,256 - 16 - 16 

The current amplitude distribution on the aperture is then obtained by summing 

the column matrices of C.. in [ P,, ] [ 1 6 , 1 6  '''1 I, [ P k k ]  and [ 1 6 , 1 6 s i j ]  'Orre- 1 1  

sponding to the beams A and B y  respectively, where P,, is a diagonal matrix 
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with all null elements excepting the principal diagonal. All Pkk = 1 except 
-. 

‘ 2 4 8 9 2 s 6  which corresponds to a translation of the reference 

plane in forming the A beam by excitation of input (256) of 16,16Sij . The B 

beam is formed by direct excitation of input (248). 

’256,256 = e 

Each element of the column matrix Ci is therefore delayed in phase by an 

amount *248.256 - - 137r/16 . The current amplitude ( I )  on the aperture when 

beams A and B coexist, and are properly phased, is given by a sum of column 

matrices: 

- 

‘257,248 

‘258,248 
I 
I 
I 
I 
I 

‘Sil, 248 

‘512,248 - 

t 

- - 
-J ‘ 248 ,  2 5 6  

‘2S7,2S6 e 

- J  ‘ 248 ,  2 5 6  
‘278,256 e 

I 

I 
I 
I 
I 
I 

-J qJ’24t?, 2 5 6  
‘5;1,256 e 

-’ “ 2 4 8 ,  2 5 6  
‘512,256 ‘’ - 

‘257 

I258 
I 
I 
I 
I 
I 

1;11 

‘51 2 

Figure 14 illustrates the discrete transmitting aperture current amplitude dis- 

tribution fo r  the sum of beams A and B generated by the previously assumed 

values of a3 and a2. The current is uniform in the a3 direction, but has a 

cosinusoidal envelope in the a2 direction. This result holds for adjacent beams 

with equal excitation. The current amplitude can be plotted directly, now, by 

generating cross-sections of the distribution using the simple rule that the angle 

between source element current of beams A and E is given by 

(87) Q : x (ag - uA) 

where a represents the slope of the linear aperture phase plot of Figure 13, and 
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. 

x is the distance to a radiator from the a r ray  center in units of a2 . Cuts of 

.Figure 14 also represent the current distribution for a linear a r ray  of 16 

source elements for equal-weight beam addition. The corresponding sum and 

difference electric field patterns associated with this current distribution are 

shown in Figure 15. 

Certain interesting similarities and differences exist between the transmit-. 

ting and receiving modes of operation. In forming a single transmitting beam 

with the 16 X 16 planar array in the previous example, the aperture illumination 

is uniform and a single input energizes 256 output terminals of 16,  16S . In 

a, 

Figure  14-Envelope of p l ana r  ape r tu re  cu r ren t  
d i s t r ibu t ion  r e su l t i ng  from summation of a pa i r  
of equa l ly  we igh ted ,  a d j a c e n t ,  or thogonal  
t r ansmi t t i ng  beams. 

am 51, 49.9 i s 7  

aZA = a3A = a3.9 = 

aZe = RADIANS 

RADIANS 16 
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o ADJACENT BEAM A .  a2A= [-.fl\i#{' " ' ' ' ' " ' ' ' ' " ' ' ' " ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

lm.-tA NORMALIZED SUM BEAM. 
I t  1iJ 

Figure 15-Sum and difference pattern formation of 16 X 1 (linear) array of half-wave 
dipole elements (H-plane cut). al = a2 = h/2. 

receiving a single planar wavefront there exist 256 equal signals at the aperture 

and (256) signals at the beam ports. The transmitting and receiving patterns a r e  

identical for these two cases,  as are the aperture current distributions. It is 

noted that the current distribution on the aperture is not necessarily the same 

fo r  all transmitting/receiving modes for which the patterns a r e  identical. A 

first-order cosine beam is associated with uniform aperture illumination on 

reception, but cosine-uniform illumination (as in Figure 14) during transmission 

if two adjacent beams a r e  summed with equal weight in a planar array. 
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CONCLUSION 

This report represents an attempt to obtain a realistic description of the 

far-field radiation patterns for a uniform planar array and, in particular, con- 

cerns itself with combinations of gradients obtained from a passive multiple 

beam-forming matrix. Although the array factors mentioned herein can be 

found in many textbooks, and elsewhere in the literature, the viewpoint that a 

uniform planar a r ray  is representable as a three-dimensional lattice of oscil- 

lators appears to be less  common in the antenna literature. For many purposes 

this is a useful notion. It is possible to analyze the position of beam maxima, 

nulls, crossover levels, etc. without actually plotting the field patterns. Distinc- 

tions a r e  easily made between non-realizable beams (or spurious beams) and 

grating lobes. The role of the element source pattern can be seen very clearly 

and the artifice of isotropic element source patterns can be avoided. Finally, 

the diffraction power-patterns a r e  formed for physically realizable element 

source factors and three lattice factors, and a r e  then integrated over the hypo- 

thetical unit sphere to obtain the total radiated power f o r  various combinations 

of element spacing and phase gradients. A weighting o r  normalization of the 

diffraction patterns is then applied consistent with energy conservation, pro- 

viding a realistic measure of directive gain. 

The introduction of the scattering matrix notation for multiple-beam for- 

mation by passive circuits is useful to display the natural order in the signal- 

processing circuit. Scattering concepts a r e  of proven value in many physical 

disciplines and particularly in the analysis of electrical circuits. They are not 

essential to array analysis o r  to the understanding of multiple beam-forming 
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matrices. Although the full benefit of the scattering notation may not be evident 

from the limited discussion given in this report, an examination of the cited 

references makes clear  the extent to which the basic concepts can be carried 

in the analysis problem. A s  a specific example scattering matrices can readily 

be converted into transfer o r  chain matrices which admit the possibility of 

tandem-connected circuits. Many other advantages could be cited. These lead 

to a specialized discussion of eigenvalues, eigenvectors, canonical forms, Pauli 

spin operators, and related topics in linear algebra and topology. The value of 

formulating the beam-forming technique is that a very large body of mathematical 

operations becomes applicable. 

This report is planned as the first of a series of reports on the subject of 

phased arrays and passive scattering matrices, and represents an attempt at 

unifying some of the topics of elementary planar antenna array system analysis. 

It is intended to serve as a point of departure into more sophisticated treatments 

of the overall subject. Less idealized arrays can be investigated within the 

framework of the notation developed, and more complex systems can subse- 

quently be described by utilizing the basic concepts presented. Subjects such 

as phased array monopulse, high-order cosine taper illumination, aperture 

gain, reactive aperture power, array energy conservation, and mutual coupling 

phenomena constitute logical extensions of the present report. An extensive 

study of microwave scattering junction topology and basic coupling techniques 

appears essential to achieving increased design flexibilitv in phased array 

sy s tems. 
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Appendix A 

Radiation Pattern of Crossed-Dipole Antennas 

The radiated fields of the crossed dipole antenna shown in Figure (1) can be 

determined by the Poynting integration method.' The radiation vector from a 

linear antenna is given by 

where 1;' I = radius from origin to differential element, d t  , on the antenna 

lyl = radius from origin to the point P at which the field is to be 

calculated 

4 = angle between ? and T' 

and the time dependent factor eJWt  is understood (i.e., omitted). The vector 

potential at point P is 

and the fields a t  point P are given by 

-+ 
B = V x i  

'Ramo, S. and Whinnery, J . ,  "Fields and Waves in Modern Radio", New York: John Wiley and Sons, 
Inc. ,  1953. p.  505 f f .  
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The only components of the above fields which do not decrease faster than l / r  

are 

-jk e-jkr N 
e jk e-jkr N H+ = - + 477 r H, = - 

477 r 

For a specified antenna configuration and current distribution, equations 

(1) and (4) can be solved for the components of the radiated fields. For the 

crossed-dipole antenna with half-wave dipole elements and an  assumed sinus- 

oidal current distribution, the radiation functions (components of the radiation 

vector) a r e  shown in Appendix A to be 

210 
t- 

k 

2 I- 

-cos (4.i) - 

e - J Y  ( s  i n  4 cos  t, cos  + s i n  d s i n d a )  
- 1 - p 2  - 

where y = difference in phase of the currents on the individual dipoles 

a = c o s  0 c o s  Oa t s i n  fl s i n  UB s i n  4 

/3 = c o s  8 s i n  tia - s i n  0 cos OB s i n  4 

0 = tilt angle defined in Figure 1 
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Substituting for the tilt angle and phase difference in Equations (5) and (6) 

yields the components of the radiation vector for the desired antenna orientations 

and polarizations: 
c 

1) Os = Oo; linear polarization ( y  = Oo) 

. 

sin q5 c o s  B c o s  
t 

1 - sin2 G s i n 2  cp 
N,(O, O,q5) = - - k sin B 

210 
k N4(0, Q,4) = - - 

1 - sin' 8 s i n '  4 

The substitution of 6 = 0" in Equations (7) and (8) leads to the radiation 

functions in the E-plane (4 = 0' plane) as 

21, c o s ( ; c o s  8) 
NO ( 0 ,  8, 0 )  1 - - 

k sin H 

210 N,+(O, d, 0) - - 
k 

(9) 

The substitution of 8 = 90° in (7) and (8) leads to the radiation functions in 

the H-plane (8 = 90" plane) as 

2 I O  N,(O, No, 4) = - - 
k 
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2) Bp = 0"; circular polarization ( y  = 90") 

c o s ( $ s i n  e s i n  q5 

1 - s i n 2  B s i n 2 d  
N,+(O, e,+) = j - 2 1 0  c o s  + I 

k 

The radiation functions in the E-plane are 

*IO c o s  (; cos e) 
Ne(0, 0, 0 )  = - - 

k s i n  B 

The radiation functions in the H-plane are 

2 I o  N,(O, go", +) = - - 
k 

c o s  (t s i n  $) 
2 1 0  Nd(O, 90°, 4 )  = j - 
k c o s  4 
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3) ea = 45"; linear polarization ( y  = 0) 

( c o s B t s i n B s i n 4 )  ( s i n 4 c o s B - s i n  8 )  1 
k 1 - - ( c o s  1 e t s i n  B s i n  $)* 

2 

( c o s  8 t s i n  8 s i n $ )  1 
k 1 - - ( c o s  1 e t s i n  e s i n  + ) 2  

&- I, 
N$(4S0, P , + )  -: - 

2 

( C O S  8 - s i n  8 s i n  

4 

c o s  [' 
2 4' - 

. 1 - ( c o s  8 - s i n  d s i n  4)' 
2 

The radiation functions in the E-plane a r e  

N4(4So,H, 0) 0 

and the radiation pattern is plotted in Figure 4. 
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The radiation functions in the H-plane a r e  

. 

2Jz-  
I O  1 

N8(45", 90°, 4) = - - 
1 - - s i n 2  4 k 

2 

Nd(45O, 9O0,q5) = 0 

and the radiation pattern is plotted in Figure 5. 

4) en = 45O; circular polarization (7 = T /2) 

(23) 

_ _  ( c o s  8 t s i n  9 s i n  4) [e 1 ( s i n  4 cos  0 - s i n  0) c o s  

1 
2 

1 - - ( c o s  e + s i n  s i n  4 )2  

E I o  ~ ~ ( 4 5 0 ,  e, 4) .. - 
k 

( c o s  d - [ET- ( s i n  + c o s  I? + s i n  a) cos  

+ I  
1 - - 1 ( c o s  d - s i n  d s i n  $) 2 

2 

(cos c t s i n  [ ' s i n  4 )  1 Y F  Io 
N4(45", r), 4) - - c o s  $ 

2 k 
- - ( c o s  d t s i n  B s i n + )  

2 

(cos c t s i n  [ ' s i n  4 )  1 Y F  Io 
N4(45", r), 4) - - c o s  $ 

2 k 
- - ( c o s  d t s i n  B s i n + )  

2 

( c o s  t, - s i n  8 s i n  
cos  [% 

+ I  
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The radiation functions in the E-plane are 

Jz- I, 
(1 - j )  N6(4S0, 8,O) = - - 

k 1 1 - - c o s 2  e 
2 

?l cos  (- cos fi I, 2 J 2  
(1 t j >  Nd(4So, 8, 0 )  = - 

k 1 1 - - c o s 2  e 
2 

and the radiation patterns a r e  plotted in Figure 6. 

The radiation functions in the H-plane are 

JZ I, cos  [s s i n + ]  

Ne (45O, 90°, 4) = - cos  4 (1 t j )  
k 1 .  1 - - s l n 2  4 

2 

(29) 

and the radiation patterns a re  plotted in Figure 7. 
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Addendum to Appendix A 
Derivation of Radiation Vector for Crossed-Dipole Antennas 

I 60 

For  the X / 2  dipole oriented along the Z'-axis (Figure 2) the radiation 

vector is given by 

ii = Zx s i n  e c o s  4 + i s i n  B s i n  4 t iiz c o s  B 
Y 

+ -+ 
aZf  = a s i n  oa t Zz cos  da 

Y 

- - - 4  

C O S $ J = U - V =  cos @ c o s  Ba t s i n B s i n B B  s i n + = a .  

For  a sinusoidal distribution of current 

:. N I, s i n  [ k ( t  t z ' ) ]  Io s in  [k(x - z ' ) ]  <>Jkaz' d z '  

0 
- + - +  

d z '  + Gzl e j  k a z '  

0 

l 7 l  \ 



i 

If the current for the h/2 dipole along the Z"-axis (Figure 3) is assumed to be 

then its radiation vector is determined in like manner to be 

The total radiation vector is 

- - .-+ - 21, s i n  cos (z a) cos  ea c o s  (;/?)I 
N - N 1 + N 2 = a  - - [ 1 - a 2  1 - p2 Y k  

t z* 21, (; a)  s i n  0, cos (: ,B)] 
t 

1 - P2 
L 

k 

and the spherical components are:  

N, = NY s i n  q5 c o s  8 - NZ s i n  8 

-I 

cos  (; P). 
e-jy ( s i n  6 c o s  8 cos  + s i n  o s i n  0,) + -  * I O  

1 - p 2  

N4 = NY C O S  6 

L 1 - a *  k 

6 1  
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1. Length of each dipole - r\ 
2 

dipole 1 dipole 2 

Figure I-Crossed-Dipole Antenna. 

Figure 2-Geometry for Calculation of Radiation Vector Due to Dipole 1 
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270" 

1 
2 

1 -- cos2  y 

90" 

Figure 4-Radiation Pattern on E-Plane for oA = 45 O ,  y = 0 O .  

270" 

90' 

cos \rfi s i n  I) 

1 . 2  1 - - s i n  
2 

180 

Figure 5-Radiation Pattern on €I-Plane for dA 1 45 O ,  y = Oo. 
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Figure 6-Radiation Patterns on E-Plane for cJA = 4 5 ' ,  y = 90 O .  
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cos  i cos[+ sin 1 
1 1 sin2 : 
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L 
90 

Figure 7-Radiation Patterns on H-Plane for U = 45 ", = 90 O .  A 
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